Showing posts with label genetically engineered food. Show all posts
Showing posts with label genetically engineered food. Show all posts

Monday, February 6, 2012

Monsanto: A HORRIFYING PICTURE THAT WILL FREEZE THE BLOOD IN YOUR VEINS - UPDATED

Film Review: The World According to Monsanto

Film:  The World According to Monsanto – Full Length

clip_image001Directed by Marie-Monique Robin
Review by Jeffrey M. Smith

How much outrage can a single multinational corporation inspire? How much damage can they inflict? The breathtaking new film, The World According to Monsanto, features a company that sets the new standard. From Iowa to Paraguay, from England to India, Monsanto is uprooting our food supply and replacing it with their patented genetically engineered creations. And along the way, farmers, communities, and nature become collateral damage.

The Gazette says the movie "will freeze the blood in your veins." The Hour says it's a "horrifying enough picture" to warrant "fury." But most importantly, this critical film opens our eyes just in time.
The film is the work of celebrated award-winning French filmmaker Marie-Monique Robin, whose three years of work on four continents exposes why Monsanto has become the world's poster child for malignant corporate influence in government and technology.

Combining secret documents with accounts by victims, scientists and policy makers, she guides us through a web of misleading reports, pressure tactics, collusion, and attempted corruption. And we learn how the company systematically tricked governments into allowing dangerous genetically modified (GM) foods into our diet--with Monsanto in charge of determining if they're safe.

Deception, Deception, Deception

The company's history with some of the most toxic chemicals ever produced, illustrates why they can't be trusted. Ask the folks of Anniston, Alabama, where Monsanto's PCB factory secretly poisoned the neighborhood for decades. PCBs are Monsanto's toxic oils used as coolants and lubricants for over 50 years and are now virtually omnipresent in the blood and tissues of humans and wildlife around the globe. But Anniston residents have levels hundreds or thousands of times the average. They all know their levels, which they carry as death sentences. David Baker, who lost his little brother and most of his friends to PCB-related diseases such as cancer, says Anniston kids used to run up to him, report their PCB level and ask, "How long you think I got?"

clip_image002Ken Cook of the Environmental Working Group says that based on Monsanto documents made public during a trial, the company "knew the truth from the very beginning.

They lied about it. They hid the truth from their neighbors." One Monsanto memo explains their justification: "We can't afford to lose one dollar of business."

Monsanto also produced the infamous Agent Orange, the cancer and birth-defect causing defoliant sprayed over Vietnam. It contaminated more than 3 million civilians and servicemen. But according to William Sanjour, who led the Toxic Waste Division of the Environmental Protection Agency, "thousands of veterans were disallowed benefits" because "Monsanto studies showed that dioxin [the main ingredient in Agent Orange] was not a human carcinogen." But his EPA colleague discovered that Monsanto had allegedly falsified the data in their studies. Sanjour says, "If they were done correctly, [the studies] would have reached just the opposite result."

Secret documents stolen from the FDA also reveal serious health effects from Monsanto's genetically engineered bovine growth hormone, called rBGH or rBST. In particular, the amount of a powerful hormone called IGF-1 is substantially increased in milk from treated cows. Samuel Epstein, Chairman of the Cancer Prevention Coalition, says that approximately 60 studies link IGF-1 to "breast, colon, and prostate cancers."

Cancer is also implicated in Monsanto's showcase herbicide, Roundup. According Professor Robert Belle's research showing disrupted cell division, "Roundup provokes the first stages that lead to cancer." Belle, who is with the National Center for Scientific Research and the Pierre and Marie Curie Institute in France, says, "The tested doses were well below those which people normally use."

Monsanto has promoted Roundup as harmless to both humans and the environment. But their advertised environmental claims, such as "biodegradable," "leaves the soil clean," and "respects the environment," were declared false and illegal by judges in both the US and France. In fact, Monsanto's own studies showed that 28 days after application, only 2% of the product had broken down. They were forced to remove "biodegradable" from the label.

Above the law

When Monsanto's transgressions are reported to authorities, somehow the company is magically let off the hook.

When Monsanto finally did share information on PCBs with the government, for example, Ken Cook says "instead of siding with the people who were being poisoned, [the government] sided with the company. . . . It was outrageous!" When William Sanjour's EPA colleague, Cate Jenkins, asked the agency to review Monsanto's flawed Agent Orange studies, Sanjour says, "there was no investigation of Monsanto. . . . What they investigated was Cate Jenkins, the whistleblower! They made her life a hell."

When Richard Burroughs of the FDA held up approval of rBGH by demanding more rigorous and relevant testing, he was fired.

clip_image003

He says, "They figured: 'Well, if you're in the way, we'll get you out of the way. . . One day, I was escorted to the door and told that was it; I was done." Senior government scientists at Health Canada testified that their superiors were pressuring them to approve rBGH and that Monsanto had offered them an alleged bribe of $1-2 million. The scientists were later reprimanded, punished, and eventually  "dismissed for disobedience." rBGH was never approved in Canada, Europe, and most industrialized nations.

When Professor Belle went to his administration "to let the public know about the dangers" of Roundup herbicide, he was "ordered" not to communicate his findings "due to the GMO question lurking in the background." That question about genetically modified organisms was in relation to Monsanto's "Roundup Ready" crops. Monsanto has the patent for 90% of the GMOs grown on the planet, and most of them are genetically modified specifically to tolerate applications of Roundup.

*One of the most frightening things is that Monsanto is practically a U.S. government agency!!*  -  Obama Appoints Monsanto’s Vice President Michael Taylor as Senior Advisor to the Commissioner at the FDA…

Related:

Dow and Monsanto Team Up on the Mother of All Herbicide Marketing Plans

America’s farmlands to be carpet-bombed with Vietnam-ear Agent Orange chemical if Dow petition approved

Are You Eating, Drinking and Breathing Monsanto’s New ‘Agent Orange’?

Monsanto Battle Continues After Suing Midwest Farmers for Saving Seeds

GM Foods Not Served in Monsanto Cafeteria

Would You Vote for a Food Bill Monsanto Supports?

George Soros and Food Safety

PDF File
Liar, Liar: FDA Secrets, Scandals & Slip Ups!

Dumbing Down Society Part 1: Foods, Beverages, and Meds (Media and Education)

Senate Bill S.510 Passed… Quickly Explained Here

UPDATED:

President Obama appointed former Monsanto vice president and lobbyist Michael Taylor as senior advisor to the Food and Drug Administration commissioner.

This is a classic example of the fox guarding the henhouse. President Obama should isolate the FDA from corporate influence by asking Taylor to step down immediately.

That's why I created a petition to President Obama on SignOn.org. Click here to add your name, and then pass it along to your friends:

http://www.moveon.org/r?r=269891&id=35461-19004089-AN_n6Yx&t=2

The petition says:

President Obama, I oppose your appointment of Michael Taylor, a former VP and lobbyist for Monsanto, the widely criticized genetically modified (GM) food multinational, as senior advisor to the commissioner at the FDA. Taylor is the same person who as a high ranking official at the FDA in the 1990s promoted allowing genetically modified organisms into the U.S. food supply without undergoing a single test to determine their safety or risks. This is a travesty.

Taylor was in charge of policy for Monsanto's now-discredited GM bovine growth hormone (rBGH), which is opposed by many medical and hospital organizations. It was Michael Taylor who pursued a policy that milk from rBGH-treated cows should not be labeled with disclosures. Michael Taylor and Monsanto do not belong in our government.

President Obama, Monsanto has been seen as a foe to family-based agriculture, the backbone of America, by introducing dangerous changes to plants and animals and by using strong-arm legal tactics against farmers for decades. Naturally occurring plant and animal species are permanently threatened by the introduction of DNA and hormonal modification, Monsanto's core businesses.

FDA scientists once regarded genetic modification of the food supply as the single most radical and potentially dangerous threat to public health in history. As early as the 1991, a body of scientific research began to form which now includes articles in over 600 journals. As a whole, these offer scientific evidence that GM foods, hormones, and related pesticides are the root cause for the increase of many serious diseases in the U.S. Since GM foods were introduced, diagnosis of multiple chronic illnesses in the U.S. has skyrocketed. These illnesses include changes in major organs and in hormonal, immune, digestive, and reproductive systems. These modifications to foods and food production may also be contributors to colon, breast, lymphatic, and prostate cancers.

Experts are discouraged that regulators and GM companies systematically overlook potential side effects of GM. Monsanto's objective to use biotechnology to change the world's food supply is the opposite policy direction your administration should pursue. Your legacy of supporting Monsanto to have free rein in U.S. food policy is a nightmare scenario that is against the interest of all Americans and world citizens.

Will you sign the petition? Click here to add your name, and then pass it along to your friends:

http://www.moveon.org/r?r=269891&id=35461-19004089-AN_n6Yx&t=3

Saturday, January 14, 2012

Dude, That Isn’t Wax On Your Apple!

Dr. Mercola has written an excellent article on genetically engineered foods... (below)… and animals --- there are sheep that are 15% human... they will be used for organ transplants.

GM foods disrupt the reproductive cycle causing infertility... (now what was that on the Georgia Guidestones about limiting the population?)....

VideoPlastic Lettuce

Dude, That Isn’t Wax On Your Apple!

Fancy yourself a vegetarian or vegan?

Think that the label that says “organically grown” has anything to do with the packaging, storage, and transport of that product to stores?

What if I told you that cow, pig, and chicken collagen is now used in place of wax on your fruits and vegetables, among many other  things much worse than you can probably imagine?

And what if then I told you, as with most atrocities that happen now-a-days, that this is all approved by the FDA…

Since the early 12th century, there has been a tradition of applying wax onto the skins of fruits and vegetables for longer storage life. Today, that tradition is being carried on with a whole new generation of chemicals and compounds that are genetically designed to accomplish the same goal. But in these modern times, the health and well-being of the consumer of that apple is not necessarily the goal of this unnatural, inorganic process.

Bottom line… your produce is being dipped and sprayed with an experimental host of holy horrors in the name of “food safety” and longer shelf-life. Prepare yourself to be shocked and amazed that our Federal agency that is designed to protect us, the Food and Drug Administration, is allowing these dangerous and unhealthy practices to be perpetrated on an unwitting public, all in the name of profits.

This video was recently posted to Youtube, showing a woman peeling off of her freshly bought supermarket romaine lettuce what appears to be a plastic coating, similar to the type one would peal off of the screen of a new electronic gadget. She has no idea what she has discovered…

Now, while this seems to be an almost incredible and hard to believe hoax, the truth is even stranger. Please read on…

For those of you that know of my writing, you know that I like to get right down to the nitty-gritty… the primary source. And so we will go right to what the FDA has to say about what this strange plastic-like substance is, and whether or not it approves of such food handling practices (which it does).

Here is the link for the FDA’s website, entitled:

“Chapter VI. Microbiological Safety of Controlled and Modified Atmosphere Packaging of Fresh and Fresh-Cut Produce – Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-Cut Produce”.

Link: http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm091368.htm

Wow! That sounds so wonderfully official and scientific, doesn’t it?

So what are these “preventative control measures” as referred to in this report?

Well, for our purposes, since these measures are actually edible, let’s explore what the FDA approves for our fruits and vegetables to be dipped in and sprayed with for our own “safety”…

The report states:

This chapter addresses the use of modified atmosphere packaging and controlled atmosphere packaging for the preservation of fresh produce. There have been great technological advances in this area of preservation, particularly as it refers to improving the quality and shelf-stability of highly perishable food products, such as produce. However, when using these technologies, careful attention must be paid to the effect on the survival and growth of pathogenic organisms. This chapter focuses on food safety aspects of packaging technologies that are either commercially available or under investigation…

Over the past 20 years, there has been an enormous increase in the demand for fresh fruit and vegetable products that has required the industry to develop new and improved methods for maintaining food quality and extending shelf life…

One of the areas of research that has shown promise, and had success, is that of modified atmosphere packaging (MAP). This technique involves either actively or passively controlling or modifying the atmosphere surrounding the product within a package made of various types and/or combinations of films. In North America, one of the first applications of this technology for fresh-cut produce was introduced by McDonald’s (Brody 1995), which used MAP of lettuce in bulk-sized packages to distribute the product to retail outlets…

A modified atmosphere can be defined as one that is created by altering the normal composition of air (78% nitrogen, 21% oxygen, 0.03% carbon dioxide and traces of noble gases) to provide an optimum atmosphere for increasing the storage length and quality of food/produce (Moleyar and Narasimham 1994; Phillips 1996). This can be achieved by using controlled atmosphere storage (CAS) and/or active or passive modified atmosphere packaging (MAP).

The numerous film types used in MAP are listed in Table VI-2 (see below), and some commercially available MAP systems are listed in Table VI-3. Oxygen, CO2, and N2, are most often used in MAP/CAS (Parry 1993; Phillips 1996). Other gases such as nitrous and nitric oxides, sulphur dioxide, ethylene, chlorine (Phillips 1996), as well as ozone and propylene oxide (Parry 1993) have been suggested and investigated experimentally.

So was that plastic looking film being peeled off of that supermarket lettuce above actually one of many forms of modified atmosphere packaging? Was it dipped in or sprayed by a “MAP” chemical compound for “food safety”?

Lets read further into this FDA report…

1.3. Films used in MAP

Edible biodegradable coatings are yet another variant of the smart film technology, where a film is used as a coating and applied directly on the food…

The use of MAP for whole and fresh-cut produce involves careful selection of the film and package type for each specific product and package size . Effective MAP of produce requires consideration of the optimal gas concentration, product respiration rate, gas diffusion through the film, as well as the optimal storage temperature in order to achieve the most benefit for the product and consumer. In addition, when selecting an appropriate film, one has to take into account the protection provided, as well as the strength, sealability and clarity, machineability, ability to label, and the gas gradient formed by the closed film (Zagory 1995).

Recently, the long list of films and commercially available MAP systems has been augmented with the conception of both smart and edible packaging systems (Guilbert and others 1996; Phillips 1996). “Smart” or “intelligent” packaging is being used in the fresh-cut industry and includes indicators of time and temperature, gas composition, seal leakage, and food safety and quality (Rooney 2000). Some intelligent systems alter package oxygen and /or carbon dioxide permeability by sensing and responding to changes in temperature. Other smart films incorporate chemicals into packets placed in the packaging system, with no contact with the product; an example would be the use of O2 scavengers with O2 indicators. Another type of smart film, developed with food safety in mind, is currently undergoing testing. This novel system, when incorporated into a packaging film, uses an antibody detection system to detect pathogens, and expresses a positive finding as a symbol on the surface of the package, thereby alerting food handlers to the presence of pathogens. Although this technology shows promise, it is still in its infancy and comprehensive assessments have yet to be performed. Several limitations have been suggested with this technology; for example, it would not likely be able to detect pathogens at concentrations below 104 CFU/g or cm2 and would not detect pathogens within the product.

Edible biodegradable coatings are yet another variant of the smart film technology, where a film is used as a coating and applied directly on the food (Guilbert and others 1996; Francis and others 1999). Wax has been used in China since the 12th and 13th centuries as an edible coating to retard desiccation of citrus fruits, and in the last 30 years, edible films and coatings made from a variety of compounds have been reported. Guilbert and others (1996) and Baldwin (1994) have extensively reviewed some of the newer edible films (see Tables VI-3 and VI-5). These films are gaining popularity due to both environmental pollution and food safety concerns (Padgett and others 1998). However, a number of problems have also been associated with edible coatings. For example, modification of the internal gas composition of the product due to high CO2 and low O2 can cause problems such as anaerobic fermentation of apples and bananas, rapid weight loss of tomatoes, elevated levels of core flush for apples, rapid decay in cucumbers, and so on (Park and others 1994).

Edible films may consist of four basic materials: lipids, resins, polysaccharides and proteins (Baldwin and others 1995). Plasticizers such as glycerol as well as cross-linking agents, antimicrobials, antioxidants, and texture agents can be added to customize the film for a specific use (Guilbert and others 1996). Plasticizers have the specific effect of increasing water vapor permeability. Therefore, their addition must be considered when calculating the desired water vapor properties of each specific film, since too much moisture can create ideal growth conditions for some foodborne pathogens. The most common plasticizer used to cast edible films is food-grade polyethylene glycol, which is used to reduce film brittleness (Koelsch 1994).

What is polyethylene glycol?

Link – http://en.wikipedia.org/wiki/Polyethylene_glycol – which causes nephrotoxicity (renal problems)

Link – http://en.wikipedia.org/wiki/Nephrotoxicity

What is a plasticizer?

Plasticizers (UK = plasticisers) or dispersants are additives that increase the plasticity or fluidity of a material. The dominant applications are for plastics, especially polyvinyl chloride (PVC). The properties other materials are also improved when blended plasticizers including concrete, clays, and related products. The worldwide market for plasticizers in 2000 was estimated to be several million tons per year.

Plasticizers work by embedding themselves between the chains of polymers, spacing them apart (increasing the “free volume”), and thus significantly lowering the glass transition temperature for the plastic and making it softer. For plastics such as PVC, the more plasticizer added, the lower its cold flex temperature will be. This means that it will be more flexible and its durability will increase as a result of it. Some plasticizers evaporate and tend to concentrate in an enclosed space; the “new car smell” is caused mostly by plasticizers evaporating from the car interior.

Plasticizers make it possible to achieve improved compound processing characteristics, while also providing flexibility in the end-use product… Plasticizers also function as softeners, extenders, and lubricants, and play a significant role in rubber manufacturing.

Other uses include:

  • Phthalate-based plasticizers are used in situations where good resistance to water and oils is required. Some common phthalate plasticizers are:
    • Bis(2-ethylhexyl) phthalate (DEHP), used in construction materials and medical devices
    • Diisononyl phthalate (DINP), found in garden hoses, shoes, toys, and building materials
    • Bis(n-butyl)phthalate (DnBP, DBP), used for cellulose plastics, food wraps, adhesives, perfumes, and cosmetics – about a third of nail polishes, glosses, enamels, and hardeners contain it, together with some shampoos, sunscreens, skin emollients, and insect repellents
    • Butyl benzyl phthalate (BBzP) is found in vinyl tiles, traffic cones, food conveyor belts, artificial leather, and plastic foams
    • Diisodecyl phthalate (DIDP), used for insulation of wires and cables, car undercoating, shoes, carpets, pool liners
    • Di-n-octyl phthalate (DOP or DnOP), used in flooring materials, carpets, notebook covers, and high explosives, such as Semtex (plastic explosive). Together with DEHP it was the most common plasticizers, but now is suspected of causing cancer
    • Diisooctyl phthalate (DIOP), all-purpose plasticizer for polyvinyl chloride, polyvinyl acetate, rubbers, cellulose plastics, and polyurethane.
    • Diethyl phthalate (DEP)
    • Diisobutyl phthalate (DIBP)
    • Di-n-hexyl phthalate, used in flooring materials, tool handles, and automobile parts
    • and on and on…

Lipids, or waxes and oils, and resins such as shellac and wood rosin have been widely used for intact fruits and vegetables in two distinct forms, laminates and emulsions (Baldwin and others 1995). Lipid-based edible barriers are known for their low water vapor permeabilities. Koelsch (1994) found that the water vapor permeability of a cellulose-based emulsion barrier is dependent on the lipid moiety used; a minimum permeability can be achieved when stearic acid is used as the lipid. This is due to the effective barrier formed by stearic acid through an interlocking network. However, lipid-based edible films also require a support matrix to reduce brittleness, and have difficulty adhering to the hydrophilic cut surfaces of fruits and vegetables (Koelsch 1994; Baldwin and others 1995). Some of the most common compounds used for support matrices are modified celluloses of hydroxypropylmethyl, ethyl and methylcellulose, chitosan and whey protein isolate (WPI; Koelsch 1994).

*** Authors note: Steric acid is also known as tallow (animal and plant fatty acids used in the production of soap).

In general, polysaccharides such as cellulose, pectin, starch, carrageenan, and chitosan, can adhere to cut surfaces of produce and effectively allow gas transfer; however, they are not effective moisture barriers. Due to their CO2 and O2 permeabilities, polysaccharide-based films allow the creation of desirable modified atmospheres, an attractive advantage over plastic or shrink wrap MAP which can be labor intensive, expensive and environmentally harmful (Baldwin and others 1995). A number of cellulose derived coatings are available commercially, most taking advantage of the modified atmosphere effect of the barriers. Pro-long (Courtaulds Group, London) and Semperfresh (Surface Systems International, Ltd., Oxfordshire, U.K.) are examples of water-soluble composite coatings comprised of the sodium salt of carboxymethyl cellulose (CMC) and sucrose fatty acid ester emulsifiers (Baldwin and others 1995). Their properties are discussed in Table VI-6. A newer product called “Snow-White,” based on sucrose esters of fatty acids, has also been used to combat oxidative browning in the potato industry. Nature-Seal is a polysaccharide-based surface treatment that uses cellulose derivatives as film formers, but unlike Semperfresh and Pro-long, does not contain sucrose fatty acid esters. Nature-Seal is a browning inhibitor that is applied as a dip or spray and has been shown to delay ripening of whole fruits and vegetables, and to retard discoloration of peeled carrots and cut mushrooms.

*** Authors note: Sucrose is the organic compound commonly known as table sugar and sometimes called saccharose. This is the kind of processed sugar many health conscious people avoid, and which diabetics aren’t supposed to consume, though the natural sugars in fresh fruit is acceptable for diabetics. This is a blatantly deceiving practice.

Finally, proteins such as casein, soy, and zein, can also adhere to hydrophilic cut produce surfaces and are easily modified to form films; however, they also allow water diffusion (Baldwin and others 1995). Unlike lipid-based barriers, protein-based barriers do not require the addition of a support matrix, since the protein acts as both the water vapor barrier and structural component of the film (Koelsch 1994). Park and others (1994) reported the successful application of a corn-zein film to extend the shelf life of tomatoes. Color change, loss of firmness, and weight loss during storage were delayed, and shelf life was extended by 6 d in comparison to untreated tomatoes. The corn-zein product used in the above study was a commercial product that was brushed onto the tomatoes (Regular Grade F4000, INC Biomedicals, Inc.), and consisted of 54 g of corn-zein, 14 g of glycerine, and 1 g of citric acid dissolved in 260 g of ethanol. Park and others (1994) did not comment on the use of citric acid in the film solution; however, others have found that edible films composed of zein were more successful in preventing the rancidity of nuts when citric acid was added (Guilbert and others 1996).

*** Author’s note: Ethanol, also called ethyl alcohol, pure alcohol, grain alcohol, or drinking alcohol, is a volitile, flammable, colorless liquid. It is a psychoactive drug and one of the oldest recreational drugs. Best known as the type of alcohol found in alcoholic beverages, it is also used in thermometers, as a solvent, and as a fuel. In common usage, it is often referred to simply as alcohol or spirits.

In order to obtain an edible film that incorporates all the best qualities of these four basic materials, as well as fulfilling the specific conditions for each fruit or vegetable, manufacturers are now producing films comprised of different combinations. Some of the advantages and disadvantages of the four basic edible film barriers, as well as combinations thereof, are listed in Table VI-5 (discussed below).

Here is Table VI-3:

“Commercially available modified atmosphere packaging systems for small and large quantities of produce”

Edible Films1

TAL Pro-Long (Courtaulds Group)
Blend of sucrose esters of fatty acids and sodium carboxymethylcellulose; depresses internal O2 and is edible.
Pears

Nutri-Save
N, O-carboxymethychitosan edible film.
Pears, apples

Semperfresh, Nu-Coat Fo, Ban-seel, Brilloshine, Snow-White and White Wash products (Surface Systems Intl. Ltd.)
Sucrose ester based fruit coatings with sodium carboxymethyl cellulose products manufactured exclusively from food ingredients available in dip or spray.
Most fruits and vegetables, processed and whole potatoes (Snow-White and White-Wash)

PacRite products (American Machinery Corp.)
Variety of products, water-based carnauba-shellac emulsions, shellac and resin water emulsions, water-based mineral oil fatty acid emulsions, and so forth.
Apples, citrus, tomatoes, cucumbers, green peppers, squash, peaches, plums, nectarines

Fresh-Cote product line (Agri-Tech Inc.)
Variety of products including; shellac-based, carnauba-based and oil emulsion edible films.
Apples, pears, eggplant, tomatoes, cucumbers, stone fruits

Vector 7, Apl-Brite 300C, Citrus-Brite 300C (Solutec Corp.)
Vector 7 is a shellac-based film with morpholine; the Apl-Brite and Citrus-Brite are carnuba-based films.
Apples and citrus fruits

Primafresh Wax (S.C. Johnson)
Carnauba-based wax emulsion.
Apples, citrus and other firm-surfaced fruit

Shield-Brite products (Pace Intl. Shield-Brite)
Shellac, carnauba, natural wax and vegetable oil/wax and xanthan gum products.
Citrus, pears, stone fruit

Sta-Fresh Products (Food Machinery Corp.)
Natural, synthetic, and modified natural resin products and combinations thereof.
Citrus, apples, stone fruits, pomegranates, tomatoes, pineapple, cantaloupes, and sweet potatoes

Fresh Wax products (Fresh Mark Corp.)
Shellac and wood resin, oxidized polyethylene wax, white oil/paraffin wax products.
Citrus, cantaloupes, pineapples, apples, sweet potatoes, cucumbers, tomatoes and other vegetables

Brogdex Co. products
Carnauba wax emulsions with or without fungicides, emulsion wax, high shine wax, water-based emulsion wax, carnauba-based emulsion, vegetable oil, resin-based and concentrated polyethylene emulsion wax products.
Apples, melons, bananas, avocado, chayote, papaya, mango, pineapple, citrus, stone fruits.

FreshSealTM (Planet Polymer Technologies Inc. has licensed CPG Technologies of Agway, Inc. to produce)
A patented coating that slows the ripening process by controlling the O2 and CO2 and water vapor flowing in and out of the product. It can be tailored to the individual respiration rates of different fruit and vegetable varieties.
Currently available for avocado, cantaloupe, mangoes and papaya. Use on limes, pineapples and bananas is currently under investigation.

Nature-SealTM , AgriCoat (Mantrose Bradshaw Zinsser Group)
Composite polysaccharide-based coating using cellulose derivatives as film formers.
Sliced apples, carrots, peppers, onions, lettuce, pears, avocados, sliced bananas

Intelligent Systems

Activated Earth Films
Typically polyethylene bags with powdered clay material made of powdered aluminum silicates, incorporated into the film matrix. Possibly reduces ethylene concentration by facilitating its diffusion out of the bag.
Variable

Temperature Responsive Films (Landec Labs)
Films increase their gas permeabilities in response to temperature increases as well as increases in respiration. Stabilizes the modified atmosphere so it remains the same under various temperatures.
Specific for each product

CO2 Scavengers FreshLock (Mitsubishi Gas Chemical Co.), Verifrais (Codimer Tournessi, Gujan-Mestras)
Sachet type product which is placed directly in the package and absorbs both carbon dioxide and oxygen.
Fruits and vegetables, coffee

Ethylene absorbents Ethysorb (StayFresh Ltd), Ageless C (Mitsubishi Gas Chemical Company), Freshkeep (Kurarey), Acepack (nippon Greener), Peakfresh (Klerk Plastic Industrie, Chantler Packaging Inc.)
Sachet type product which is placed directly in the package and absorbs ethylene. They are composed of a variety of products such as aluminum oxide, potassium permanganate, activated carbon, and silicon dioxide.
Fruits and vegetables

Antimicrobial Films-unsure of commercial availability

-=-

So let’s take a look at what some of these “food safety” MAP products actually are, as listed in the above table:

-=-

Shellac is a resin secreted by the female lac bug, on trees in the forests of India and Thailand. It is processed and sold as dry flakes which are dissolved in ethyl alcohol to make liquid shellac, which is used as a brush-on colorant, food glaze and wood finish. Shellac functions as a tough natural primer, sanding sealant, tannin-blocker, odour-blocker, stain, and high-gloss varnish. Shellac was once used in electrical applications as it possesses good insulation qualities and it seals out moisture. Phonograph (gramaphone) records were also made of it during the pre-1950s, 78-rpm recording era.

Shellac is one of the few historically appropriate finishes (including casein paint, spar varnishes, boiled linseed oil and lacquer) for early 20th-century hardwood floors, and wooden wall and ceiling paneling.

From the time it replaced oil and wax finishes in the 19th century, shellac was one of the dominant wood finishes in the western world until it was replaced by nitrocellulose lacquer in the 1920s and 1930s.

(Source: http://en.wikipedia.org/wiki/Shellac)

-=-

Morpholine is a common additive, in parts per million concentrations, for pH adjustment in both fossil fuel and nuclear power plant steam systems. Morpholine is used because its volatility is about the same as water, so once it is added to the water, its concentration becomes distributed rather evenly in both the water and steam phases. Its pH adjusting qualities then become distributed throughout the steam plant to provide corrosion protection. Morpholine is often used in conjunction with low concentrations of hydrazine or ammonia to provide a comprehensive all-volatile treatment chemistry for corrosion protection for the steam systems of such plants. Morpholine decomposes reasonably slowly in the absence of oxygen at the high temperatures and pressures in these steam systems.

The European Union has forbidden the use of Morpholine in fruit coating.

Morpholine is widely used in the USA, Canada, Australia and other parts of the world as a food additive for use as a component or coating for fruits and vegetables. However, the use of Morpholine is prohibited in the European Union, those countries where its use is permitted are fully aware of these restrictions. Consequently, they have strict protocols to ensure waxes containing Morpholine are not used for fruit destined for the UK and the EU.

Morpholine is not permitted in Europe because it is known to be a precursor of N-nitrosomorpholine, a carcinogen.

(Source: http://www.salltd.co.uk/news_item.jsp?file=2010-09-29%20Morpholine%20residues%20detected%20in%20apples%20from%20Chile.html)

(Source: http://en.wikipedia.org/wiki/Morpholine)

-=-

Carboxymethyl cellulose (CMC) or cellulose gum is a synthesized cellulose derivative.

CMC is used in “food science” as a viscosity modifier or thickener, and to stabilize emulsions in various products including ice cream. As a food additive, it has E number E466. It is also a constituent of many non-food products, such as K-Y Jelly, toothpaste, laxatives, diet pills, water-based paints, detergents, textile sizing and various paper products. It is used primarily because it has high viscosity, is non-toxic, and is hypoallergenic. In laundry detergents it is used as a soil suspension polymer designed to deposit onto cotton and other cellulosic fabrics creating a negatively charged barrier to soils in the wash solution. CMC is used as a lubricant in non-volitile eye-drops (artificial tears). Sometimes it is methyl cellulose (MC) which is used, but its non-polar methyl groups (-CH3) do not add any solubility or chemical reactivity to the base cellulose.

Following the initial reaction the resultant mixture produces approximately 60% CMC plus 40% salts (sodium chloride and sodium glycolate). This product is the so-called Technical CMC which is used in detergents. A further purification process is used to remove these salts to produce pure CMC which is used for food, pharmaceutical and dentifrice (toothpaste) applications. An intermediate “semi-purified” grade is also produced, typically used in paper applications.

CMC is also used in pharmaceuticals as a thickening agent. CMC is also used in the oil drilling industry as an ingredient of drilling mud, where it acts as a viscosity modifier and water retention agent. Poly-anionic cellulose or PAC is derived from CMC and is also used in oilfield practice.

-=-

Paraffin – medicinal liquid paraffin is used to aid bowel movement in persons suffering chronic constipation; it passes through the gastrointestinal tract without itself being taken into the body, but it limits the amount of water removed from the stool. In the food industry, where it may be called “wax”, it can be used as a lubricant in mechanical mixing, applied to baking tins to ensure that loaves are easily released when cooked and as a coating for fruit or other items requiring a “shiny” appearance for sale.

It is often used in infrared spectroscopy, as it has a relatively uncomplicated IR spectrum. When the sample to be tested is made into a mull (a very thick paste), liquid paraffin is added so it can be spread on the transparent (to infrared) mounting plates to be tested.

Mineral oil has also seen widespread use in biotechnology for preventing the evaporation of small volumes of liquid during heating. Polymerase chain-reaction samples may need to be overlaid with a layer of mineral oil to prevent evaporation during the high heat (95 °C) required to denature DNA.

Paraffin wax as a food grade substance is used in:

  • Shiny coating used in candy-making; although edible, it is non-digestible, passing right through the body without being broken down
  • Coating for many kinds of hard cheese, like Edam cheese
  • Sealant for jars, cans, and bottles
  • Chewing gum additive

It is also used for:

  • Candle-making
  • Coatings for waxed paper or cloth
  • Investment casting
  • Anti-caking agent, moisture repellent, and dust-binding coatings for fertilizers
  • Agent for preparation of specimens for histology
  • Bullet lubricant – with other ingredients, such as olive oil and beeswax
  • Crayons
  • Solid propellant for hybrid rocket motors
  • Component of surf-wax, used for grip on surfboards in surfing
  • Component of glide wax, used on skies and snowboards
  • Friction-reducer, for use on handrails and cement ledges, commonly used in skateboarding
  • Ink. Used as the basis for solid ink different color blocks of wax for thermal printers. The wax is melted and then sprayed on the paper producing images with a shiny surface
  • Microwax: food additive, a glazing agent with E number E905
  • Forensics aid: the nitrate test uses paraffin wax to detect nitrates and nitrites on the hand of a shooting suspect
  • Antiozonant agents: blends of paraffin and micro waxes are used in rubber compounds to prevent cracking of the rubber; the antiozonant waxes can be produced from synthetic waxes, FT wax, and Fischer Tropsch wax
  • Mechanical thermostats and actuators, as an expansion medium for activating such devices
  • “Potting” guitar pickups, which reduces microphonic feedback caused from the subtle movements of the pole pieces
  • “Potting” of local oscillator coils to prevent microphonic frequency modulation in low end FM radios.
  • Wax baths for beauty and therapy purposes
  • Thickening agent in many Paintballs, as used by Crayola
  • An effective, although comedogenic, moisturizer in toiletries and cosmetics such as Vaseline
  • Prevents oxidation on the surface of polished steel and iron

(Source: http://en.wikipedia.org/wiki/Paraffin)

-=-

N(6)-Carboxymethyllysine (CML), also known as N(epsilon)-(carboxymethyl)lysine, is an advanced glycation endproduct (AGE). CML has been the most used marker for AGEs in food analysis.

An advanced glycation end-product (AGE) is the result of a chain of chemical reactions after an initial glycation reaction. Side products generated in intermediate steps may be oxidizing agents (such as hydrogen peroxide), or not (such as beta amyloid proteins). “Glycosylation” is sometimes used for “glycation” in the literature, usually as ‘non-enzymatic glycosylation.’

AGEs may be formed external to the body (exogenously) by heating (e.g., cooking);or inside the body (endogenously) through normal metabolism and aging. Under certain pathologic conditions (e.g., oxidative stress due to hyperglycemia in patients with diabetes), AGE formation can be increased beyond normal levels. AGEs are now known to play a role as proinflammatory mediators in gestational diabetes as well.

The formation and accumulation of advanced glycation endproducts (AGEs) has been implicated in the progression of age-related diseases. AGEs have been implicated in Alzheimer’s Disease,cardiovascular disease,and stroke.The mechanism by which AGEs induce damage is through a process called cross-linking that causes intracellular damage and apoptosis.They form photosensitizers in the crystalline lens, which has implications for cataract development.Reduced muscle function is also associated with AGEs.

AGEs may be less, or more, reactive than the initial sugars they were formed from. They are absorbed by the body during digestion with about 30% efficiency. Many cells in the body (for example, endothelial cells, smooth muscle, and cells of the immune system)from tissue such as lung, liver, kidney, and peripheral blood bear the Receptor for Advanced Glycation End-products (RAGE) that, when binding AGEs, contributes to age- and diabetes-related chronic inflammatory diseases such atherosclerosis, asthma, arthritis, myocardial infarction, nephropathy, retinopathy, periodontis, and neuropathy.. There may be some chemicals, such as aminoguanidine, that limit the formation of AGEs by reacting with 3-deoxyglucosone.

The total state of oxidative and peroxidative stress on the healthy body, and the accumulation of AGE-related damage is proportional to the dietary intake of exogenous (preformed) AGEs, the consumption of sugars with a propensity towards glycation such as fructose and galactose. (So naturally, this AGE is used to coat fructose engorged fruit!!! Real safe…)

AGEs affect nearly every type of cell and molecule in the body, and are thought to be one factor in aging and some age-related chronic diseases.They are also believed to play a causative role in the vascular complications of diabetes mellitus.

They have a range of pathological effects, including increasing vascular permeability, inhibition of vascular dilation by interfering with nitric oxide, oxidising LDL, binding cells including macrophage, endothelial, and mesangial cells to induce the secretion of a variety of cytokines and enhancing oxidative stress.

-=-

Gelatin (or gelatine) is a translucent, colorless, brittle (when dry), flavorless solid substance, derived from the collagen inside animals’ skin and bones. It is commonly used as a gelling agent in food, pharmaceuticals, photography, and cosmetic manufacturing. Substances containing gelatin or functioning in a similar way are called gelatinous. Gelatin is an irreversibly hydrolyzed form of collagen, and is classified as a foodstuff and therefore carries no E Number. It is found in some gummy candies as well as other products such as marshmallows, gelatin dessert, and some low-fat yogurt. Household gelatin comes in the form of sheets, granules, or powder. Instant types can be added to the food as they are; others need to be soaked in water beforehand.

Gelatin is a mixture of peptides and proteins produced by partial hydrolysis of collagen extracted from the boiled crushed bones, connective tissues, organs and some intestines of animals such as domesticated cattle, chicken, and pigs. The natural molecular bonds between individual collagen strands are broken down into a form that rearranges more easily. Gelatin melts to a liquid when heated and solidifies when cooled again. Together with water, it forms a semi-solid colloid gel.

The worldwide production amount of gelatin is about 300,000 tons per year (roughly 600 million lb).On a commercial scale, gelatin is made from by-products of the meat and leather industry.Gelatin is derived mainly from pork skins, pork and cattle bones, or split cattle hides; contrary to popular belief, horns and hooves are not used.The raw materials are prepared by different curing, acid, and alkali processes which are employed to extract the dried collagen hydrolysate. These processesmay take up to several weeks, and differences in such processes have great effects on the properties of the final gelatin products.

(Source: http://en.wikipedia.org/wiki/Gelatin)

Authors note… And so the practical joke of the century from the villainous FDA? Vegetarians and vegans have all this time been eating organic fruit and veggies covered in pig, beef, and chicken byproducts. Oh, they must get a kick out of themselves!

-=-

Could this food safety practice actually be causing harm and promoting disease and harmful pathogens?

Oh, most certainly, according to the FDA report.

In fact, it after reading this report, I am very suspicious that the recent outbreaks of food-borne illness caused from produce may X have ironically been caused by this scientific process of food safety.

Remember the great spinach scare of the 2006, when almost all prepackaged washed and ready to eat spinich was recalled due to the strain of E. coli called 0157:H7? Several of those infected during that outbreak were diagnosed with hemolytic uremic syndrome, a serious form of kidney failure (remember, the kidneys are your renal system, a side effect of which is mentioned above).

How about the recent February 2011 recall of broccoli, where a number of broccoli products sold under the Signature Café, TFarms and Raley’s labels were recalled due to the risk of Listeria food poisoning?

It seems most if not all of these recalls have to do with “fresh cut” or “washed and ready to eat” produce, as well as whole produce.

So let’s take a look at the report to see what this Map film can do for our little pathogenic food poisoning friends…

3.2. Pathogenic organisms

…MAP produce is vulnerable from a safety standpoint because modified atmospheres may inhibit organisms that usually warn consumers of spoilage, while the growth of pathogens may be encouraged. Also, slow growing pathogens may further increase in numbers due to the extension of shelf life. Currently, there is concern with the psychrotrophic foodborne pathogens such as L. monocytogenes, Yersinia entercolitica and Aeromonas hydrophila, as well as non-proteolytic C. botulinum, although clearly a number of other microorganisms, especially Salmonella spp., E. coli O157:H7 and Shigella spp., can be potential health risks.

3.3. Clostridium botulinum (botulism)

…there is some concern about the use of MAP with respect to this organism (Zagory 1995). Depending on the product in a MA package, the level of O2 can decrease rapidly if the product is temperature abused and product respiration increases, leaving a highly anaerobic environment ideal for the growth and toxin production of C. botulinum (Francis and others 1999)…

…in 1987, four circus performers in Sarasota, FL became ill with symptoms of botulism after consuming coleslaw prepared from packaged shredded cabbage purchased three weeks earlier in New Orleans (Solomon and others 1990). Researchers suspected that the cabbage had been packaged using MAP and that contaminated cabbage further contaminated the dressing, leading to the recovery of C. botulinum type A toxin and spores from the dressing.

…Lilly and others (1996) found that only 0.3% (1 of 337) of sampled shredded cabbage obtained from retail suppliers in the United States contained C. botulinum. However, the products tested had all been stored at 4°C (39.2°F), below the minimum for growth of proteolytic C. botulinum

Growth and toxin production of C. botulinum before obvious product spoilage has also been observed on Agaricus bisporus mushrooms (Sugiyama and Yang 1975) and potato slices (Dignan 1985). As well, Austin and others (1998) performed challenge studies using both nonproteolytic and proteolytic strains of C. botulinum on MAP fresh-cut vegetables and found that samples of butternut squash (5°C [41°F], 21 d) and onion (25°C [77°F], 6 d) appeared organoleptically acceptable when toxin was detected. It was also demonstrated that toxin production by C. botulinum varied with the vegetables tested. Only nonproteolytic strains growing on butternut squash were capable of producing neurotoxin at temperatures as low as 5°C (41°F ) in 21 d, whereas proteolytic strains were able to produce toxin on all vegetables tested (onion, butternut squash, rutabaga, romaine lettuce, stir-fry and mixed salad), except coleslaw at 15°C (59°F) and higher (Austin and others 1998)…

Fresh mushrooms and tomatoes have also been shown to contain spores of Clostridium spp., and therefore the possibility of botulism associated with these MAP products must not be ignored (Zagory 1995).

3.4. Listeria monocytogenes

Recently, concerns about possible pathogen contamination in MAP produce have focused on L. monocytogenes due to its ability to grow at refrigeration temperatures (NACMCF 1999). Numerous researchers have reported that this organism can remain largely unaffected by MAP, while the normal microflora is inhibited (Amatanidou and others 1999; Francis and O’Bierne 1997, 1998). Thus, although MAP produce can remain organoleptically acceptable, L. monocytogenes, with a reduced microflora and, especially if low levels of lactic acid bacteria are present, can grow at low temperatures to potentially harmful levels during the extended storage life of a MAP produce product

Early studies showed that L. monocytogenes inoculated onto broccoli, asparagus and cauliflower was unaffected by a modified atmosphere of 3% CO2, 18% O2 and 79% N2 for 10 d at 10°C (Berrang and others 1989a). Further studies by Beuchat and Brackett (1990a) clearly demonstrated that L. monocytogenes increased significantly in number on lettuce stored in a modified atmosphere of 3% O2 and 97% N2

…Francis and O’Beirne (1997) also reported that the growth of L. monocytogenes was stimulated by nitrogen flushing at 8°C (46.4°F). In addition, increasing CO2 levels from 10 to 20% has been reported to stimulate the growth of L. monocytogenes in a surface model system (Amanatidou and others 1999).

Challenge studies conducted by Farber and others (1998) focused on commercially available packaged vegetables and salads, as well as vegetables processed to mimic foodservice conditions. The importance of refrigeration was clearly demonstrated as L. monocytogenes population levels remained constant on all fresh-cut, processed and packaged vegetables stored at 4°C (39.2°F), with the exception of butternut squash and carrots on which the levels increased and decreased, respectively. At 10°C (50°F), the growth of L. monocytogenes was supported on all vegetables tested with the exception of chopped carrots, where the population decreased by 2 log units over 9 d. The inhibitory properties of raw, uncooked carrots and carrot juice on the growth of L. monocytogenes have been previously reported (Beuchat and Brackett 1990b). As well, Jacxsens and others (1999) reported a decline in L. monocytogenes on both Brussels sprouts and carrots packaged under a modified atmosphere (2 to 3% O2, 2 to 3% CO2, and 94 to 96% N2) and stored at 7°C (44.6°F)…

…and the authors concluded that these conditions might allow L. monocytogenes to reach potentially hazardous levels during the shelf life of the product…

The effects of competition between the indigenous microflora and pathogens on MAP produce have not been studied extensively. However, in a recent study, Francis and O’Beirne (1998) used a surface model agar system to examine the effects of storage atmosphere on L. monocytogenes and the competing microflora (Pseudomonas fluorescens, P. aeruginosa, Enterobacter cloacae, Enterobacter agglomerans and Leuconostoc citreum). The findings suggested that MAP conditions (5-20% CO2, balance N2 and 3% O2) might increase the growth rate of L. monocytogenes

…Liao and Sapers (1999) also reported that P. fluorescens strains inhibited the growth of L. monocytogenes on endive leaves and spinach, possibly due to the production of a fluorescent siderophore by the pseudomonads. In general, at 3% O2, a level often reached in commercial MAP packages, it appeared that growth of the inoculated mixed natural population was decreased, whereas L. monocytogenesproliferated.

Reports of L. monocytogenes growing on sliced apples in controlled atmosphere (Conway and others 1998) and peeled potatoes in vacuum-packages (Juneja and others 1998) at abusive temperatures provide further evidence that this organism may pose a safety risk with respect to certain MAP fruit and vegetable products, and reiterates the importance of Good Agriculture Practices (GAP), Good Manufacturing Practices (GMP) and HACCP for produce post-harvest handling and processing.

More research needs to be done to examine the influence of different atmospheres, background microflora and storage temperatures on the survival and growth of L. monocytogenes on MAP fresh-cut produce.

3.5. Aeromonas hydrophila

Aeromonas spp. can be found on a wide variety of foods, as well as in most aquatic environments and most often causes gastroenteritis, and occasionally septicemia (Kirov 1997)… A. hydrophila can grow at refrigeration temperatures, and several studies have shown that growth is not affected by low O2 levels (1.5%) and CO2 levels up to 50% (Francis and others 1999). A survey of 97 prepared salads found A. hydrophila to be present in 21.6% of them, significantly lower than in meat products tested (Fricker and Tompsett 1989). Hudson and De Lacy (1991) also did a small survey of 30 salads and found A. hydrophila in only one salad package not containing mayonnaise. They surmised that the mayonnaise lowered the pH of the food, thereby inhibiting the growth of or inactivating the aeromonads present…

Berrang and others (1989b) determined that although at both 4°C (39.2°F) and 15°C (59°F), the shelf life of broccoli, asparagus and cauliflower was prolonged by MAP (that is, 11-18% O2, 3-10% CO2, 97% N2), it did not negatively affect the growth of resident or inoculated A. hydrophila. Interestingly, the organism was detected on most lots obtained from the commercial producer. Therefore, for storage periods of 8-21 d, depending on the product, A. hydrophila increased from roughly 104 to 108 or 109 CFU/g, and product that appeared suitable for consumption was heavily contaminated with the pathogen. As with L. monocytogenes, the CO2 levels that were inhibitory to A. hydrophila (that is, >50%) also damaged the product (Bennik and others 1995)…

3.6. Other pathogens of concern with respect to MAP produce

Organisms such as Salmonella, Shigella, E. coli, and various enteric viruses, such as hepatitis A, have been implicated in produce outbreaks, and, therefore, there is concern about their behavior under modified atmosphere conditions (Zagory 1995; Amanatidou and others 1999). A 1986 outbreak of shigellosis was traced back to commercially distributed MAP shredded lettuce; 347 people were affected in two west Texas counties (Davis and others 1988). Fernandez-Escartin and others (1989) tested the ability of three strains of Shigella to grow on the surface of fresh-cut papaya, jicama, and watermelon and reported that populations increased significantly when the inoculated product was left at room temperature for 4-6 h. Shigella is not part of the normal flora associated with produce, but can be passed on as contaminants by infected food handlers and contaminated manure and irrigation water.

More recently, an outbreak of Salmonella Newport was reported in the U.K., associated with the consumption of ready-to-eat salad vegetables (PHLS 2001). To date, nine human cases have been identified with the isolated strain from the implicated salad vegetables having an identical PFGE pattern to three of the human isolates.

Salmonella Typhimurium and L. monocytogenes actually had an increased growth rate at these concentrations; growth increased from 0.011 and 0.031µ/h to 0.023 and 0.041 µ/h for S. Typhimurium and L. monocytogenes, respectively. In general, E. coli O157:H7, S. Hadar and S. Typhimurium were only inhibited by CO2 levels that caused damage and spoilage to the produce (Piagentini and others 1997; Amanatidou and others 1999; Francis and others 1999). A modified atmosphere of 3% O2 and 97% N2 also had no significant effect on E. coli O157:H7 inoculated onto shredded lettuce, sliced cucumber, and shredded carrot and incubated at 12 and 21°C (21.6 and 69.8°F) (Abdul-Raouf and others 1993). At 5°C (41°F), populations of viable E. coli O157:H7 declined on stored vegetables; however, at 12 and 21°C (53.6 and 69.8°F), populations increased, demonstrating the importance of refrigeration temperatures in maintaining product safety. Richert and others (2000) who, although not studying MAP, reported that E. coli O157:H7 could survive on produce (broccoli, cucumbers and green peppers) stored at 4°C (39.2°F) and proliferate rapidly when stored at 15°C (59°F). In 1993, there were two foodborne outbreaks of enterotoxigenic E. coli (ETEC) linked to carrots in a tabouleh salad served in New Hampshire and to an airline salad on a flight from North Carolina to Rhode Island (CDC 1994). Although these carrots were of U.S. origin, ETEC is a common cause of diarrheal illness in Mexico and developing countries that import fresh product to North America. Research on the behavior of this pathogen on fresh and fresh-cut product, both under MAP and without MAP, seems warranted…

…A more recent study, investigating the survival of C. jejuni on MAP fresh-cut cilantro and lettuce, found that refrigeration temperatures in combination with a modified atmosphere of 2% O2, 18% CO2 and 80% N2 can be favorable for bacteria (Tran and others 2000). Due to the microaerophilic nature of Campylobacter spp., which require 5% O2, 10% CO2 and 85% N2 for optimal growth, the investigators suspected that a low O2 modified atmosphere may provide an environment conducive to survival of the pathogen…

-=-

Table VI-2: Polymers, film types and permeability available for packaging of MAP produce:

Edible Films
O2 permeability (mL.mm/m2.d.atm)
-
CO2 permeability (mL.mm/m2.d.atm)
Relative Humidity

Pectin
57.5
-
-
87

Chitosan
91.4
-
1553
93

Wheat (gluten)
190/250
-
4750/7100
91/94.5

Na caseinate
77
-
462
77

Gluten-DATEM
153
-
1705
94.5

Gluten-beeswax
133
-
1282
91

Na casenate/Myvacet
83
-
154
48

MC/MPMC/fatty acids
46.6
-
180
52

MC and beeswax
4
-
27
42

Gluten-DATEM and beeswax
<3
-
15
56

Gluten-Beeswax and beeswax
<3
-
13
56

Methylcellulose-palmitic acid
78.8
-
-
100

Zein
0.362
-
2.672
0.1163

Cozeen
0.892
-
5.252
0.4073

Polyethylene
8.32
-
26.12
-

Polypropylene
0.552
-
-
0.000653

Sucrose polyester
2.102
-
-
0.000423

Smart Films

  • O2scavengers with O2indicators
  • antibody based detection systems for detection of microbial pathogen

Antimicrobial filmsi) Edible

  • Chlorinated phenoxy compound with biocide incorporated into the polymer layer (that is, nisin, lysozyme)
  • Chlorine dioxide with biocide incorporated into polymer layer
  • Edible films with sorbic acid, sodium benzoate, benzoic acid and potassium sorbate
  • Pine based volatiles added to edible film
  • Horseradish extract added to edible film

ii) Non-edible films/products

  • Propyl paraben dispersed in a polymer emulsion (Permax 801 or Carboset)
  • LDPE with Imazalil
  • LDPE with grapefruit seed extract
  • Gas, as produced by sachets or other materials to produce sodium metabisulfite to obtain the production of sulfite

This list of ingredients includes substances that many people have high allergic reactions to, including wheat (gluten) and milk (caseinate), and ones that are just downright bad for your health, including Chlorine, corn byproducts, and other animal fatty acid byproducts.

-=-

So now at least you know. That shiny, healthy looking high-pro glow that is emanating from your fresh store-bought produce is more than likely this MAP – a film consisting of any number of inorganic, unhealthy compounds, including pork rinds and chicken bones!

The most important factor here is to understand that in an attempt prolong shelf life and reduce natural spoilage of our produce, these film covers are also creating an environment for bad pathogens to grow. And since the produce shows no signs of spoilage or contamination, the consumer may never know what is actually thriving thanks to that prolonged life allowed by modern, yet impossibly dangerous and deceiving food science.

And so once again, this is your Federal Food and Drug Administration at work.

When will we learn that the FDA is in the business of making its government owned corporations lives easier, by deregulating the rules that govern the food and drug industries and by allowing just about anything to be called “edible” and “food”, while simultaneously destroying the lives of anyone who tries to heal or cure disease without the FDA’s permission… and stealing their patents to boot? And now arresting farmers who transport raw milk across state borders as if milk is a illicit drug?

What is it going to take to make you stand up to this beast… this tyrant?

Less fluoride, perhaps…

h/t to Reality Blogger

More From Dr. Mercola:

Refuse to Eat These Foods - They Could Destroy Your Reproductive Organs
There's a "protection racket" going on to tell you it's safe - but find out how foods that contains them can possibly disrupt your reproductive cycle and may even cause a miscarriage. Also contains a poison found to cause cancer in rat studies...

This Menace Killed 50% of Rats Tested - But It's Hiding in Your Water, Air and Food
Also kills human cells within 24 hours - even at dilutions of 100,000 times... And is linked to 20 adverse health effects, including birth defects, infertility, and cancer. Find out the 2 ways you bypass its damage, inside...

Monday, August 22, 2011

Obama appoints Monsanto's vice president Michael Taylor as senior adviser to the commissioner at the FDA...

Who Owns Obama and FDA... None Other Than Monsanto!

monsanto.no.food

Obama appoints Monsanto's vice president Michael Taylor as senior adviser to the commissioner at the FDA... Folks, it just keeps getting more insane... ~ Jeffrey Smith

Michael Taylor was just appointed senior adviser to the commissioner of the FDA!

This is the same man that was in charge of FDA policy when GMO's were allowed into the US food supply without undergoing a single test to determine their safety.

He "had been Monsanto's attorney before becoming policy chief at the FDA [and then] he became Monsanto's Vice President and chief lobbyist. This month [he] became the senior adviser to the commissioner of the FDA.

He is now America's food safety czar! This is no joke."
The person who may be responsible for more food-related illness and death than anyone in history has just been made the US food safety czar. This is no joke.

Here's the back story.

When FDA scientists were asked to weigh in on what was to become the most radical and potentially dangerous change in our food supply -- the introduction of genetically modified (GM) foods -- secret documents now reveal that the experts were very concerned.

Memo after memo described toxins, new diseases, nutritional deficiencies, and hard-to-detect allergens. They were adamant that the technology carried "serious health hazards," and required careful, long-term research, including human studies, before any genetically modified organisms (GMOs) could be safely released into the food supply.

But the biotech industry had rigged the game so that neither science nor scientists would stand in their way. They had placed their own man in charge of FDA policy and he wasn't going to be swayed by feeble arguments related to food safety. No, he was going to do what corporations had done for decades to get past these types of pesky concerns. He was going to lie.

Dangerous Food Safety Lies...

When the FDA was constructing their GMO policy in 1991-2, their scientists were clear that gene-sliced foods were significantly different and could lead to "different risks" than conventional foods. But official policy declared the opposite, claiming that the FDA knew nothing of significant differences, and declared GMOs substantially equivalent.

This fiction became the rationale for allowing GM foods on the market without any required safety studies whatsoever! The determination of whether GM foods were safe to eat was placed entirely in the hands of the companies that made them -- companies like Monsanto, which told us that the PCBs, DDT, and Agent Orange were safe.

GMOs were rushed onto our plates in 1996. Over the next nine years, multiple chronic illnesses in the US nearly doubled -- from 7% to 13%. Allergy-related emergency room visits doubled between 1997 and 2002 while food allergies, especially among children, skyrocketed. We also witnessed a dramatic rise in asthma, autism, obesity, diabetes, digestive disorders, and certain cancers.

In January of this year, Dr. P. M. Bhargava, one of the world's top biologists, told me that after reviewing 600 scientific journals, he concluded that the GM foods in the US are largely responsible for the increase in many serious diseases.

In May, the American Academy of Environmental Medicine concluded that animal studies have demonstrated a causal relationship between GM foods and infertility, accelerated aging, dysfunctional insulin regulation, changes in major organs and the gastrointestinal system, and immune problems such as asthma, allergies, and inflammation
In July, a report by eight international experts determined that the flimsy and superficial evaluations of GMOs by both regulators and GM companies "systematically overlook the side effects" and significantly underestimate "the initial signs of diseases like cancer and diseases of the hormonal, immune, nervous and reproductive systems, among others."

The Fox Guarding the Chickens...

If GMOs are indeed responsible for massive sickness and death, then the individual who oversaw the FDA policy that facilitated their introduction holds a uniquely infamous role in human history.

That person is Michael Taylor. He had been Monsanto's attorney before becoming policy chief at the FDA. Soon after, he became Monsanto's vice president and chief lobbyist.
This month Michael Taylor became the senior advisor to the commissioner of the FDA. He is now America's food safety czar. What have we done?

The Milk Man Cometh...

While Taylor was at the FDA in the early 90's, he also oversaw the policy regarding Monsanto's genetically engineered bovine growth hormone (rbGH/rbST) -- injected into cows to increase milk supply.
The milk from injected cows has more pus, more antibiotics, more bovine growth hormone, and most importantly, more insulin-like growth factor 1 (IGF-1). IGF-1 is a huge risk factor for common cancers and its high levels in this drugged milk is why so many medical organizations and hospitals have taken stands against rbGH.

A former Monsanto scientist told me that when three of his Monsanto colleagues evaluated rbGH safety and discovered the elevated IGF-1 levels, even they refused to drink any more milk -- unless it was organic and therefore untreated.

Government scientists from Canada evaluated the FDA's approval of rbGH and concluded that it was a dangerous facade. The drug was banned in Canada, as well as Europe, Japan, Australia and New Zealand.

It was approved in the US while Michael Taylor was in charge. His drugged milk might have caused a significant rise in US cancer rates. Additional published evidence also implicates rbGH in the high rate of fraternal twins in the US.

Taylor also determined that milk from injected cows did not require any special labeling. And as a gift to his future employer Monsanto, he wrote a white paper suggesting that if companies ever had the audacity to label their products as not using rbGH, they should also include a disclaimer stating that according to the FDA, there is no difference between milk from treated and untreated cows.

Taylor's disclaimer was also a lie. Monsanto's own studies and FDA scientists officially acknowledged differences in the drugged milk. No matter. Monsanto used Taylor's white paper as the basis to successfully sue dairies that labeled their products as rbGH-free.

Will Monsanto's Wolff Also Guard the Chickens?...

As consumers learned that rbGH was dangerous, they refused to buy the milk. To keep their customers, a tidal wave of companies has publicly committed to not use the drug and to label their products as such.

Monsanto tried unsuccessfully to convince the FDA and FTC to make it illegal for dairies to make rbGH-free claims, so they went to their special friend in Pennsylvania -- Dennis Wolff...

As state secretary of agriculture, Wolff unilaterally declared that labeling products rbGH-free was illegal, and that all such labels must be removed from shelves statewide. This would, of course, eliminate the label from all national brands, as they couldn't afford to create separate packaging for just one state.

Fortunately, consumer demand forced Pennsylvania's Governor Ed Rendell to step in and stop Wolff's madness. Rendell allowed Wolff to take a compromised position that now requires rbGH-free claims to also be accompanied by Taylor's FDA disclaimer on the package.
President Obama is considering Dennis Wolff for the top food safety post at the USDA. Yikes!

Rumor has it that the reason why Pennsylvania's governor is supporting Wolff's appointment is to get him out of the state -- after he "screwed up so badly" with the rbGH decision. Oh great, governor. Thanks.

Ohio Governor Gets Taylor-itus...

Ohio not only followed Pennsylvania's lead by requiring Taylor's FDA disclaimer on packaging, they went a step further. They declared that dairies must place that disclaimer on the same panel where rbGH-free claims are made, and even dictated the font size.

This would force national brands to re-design their labels and may ultimately dissuade them from making rbGH-free claims at all. The Organic Trade Association and the International Dairy Foods Association filed a lawsuit against Ohio.

Although they lost the first court battle, upon appeal, the judge ordered a mediation session that takes place today. Thousands of Ohio citizens have flooded Governor Strickland's office with urgent requests to withdraw the states anti-consumer labeling requirements.
Perhaps the governor has an ulterior motive for pushing his new rules. If he goes ahead with his labeling plans, he might end up with a top appointment in the Obama administration!

Jeffrey Smith - August 15, 2011 - posted at ConspiracyPlant

*** Jeffrey M. Smith is the author of Seeds of Deception: Exposing Industry and Government Lies About the Safety of the Genetically Engineered Foods You're Eating  and Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods from Chelsea Green Publishing (GMO Set). Smith worked at a GMO detection laboratory, founded the Institute for Responsible Technology, and currently lives in Iowa—surrounded by genetically modified corn and soybeans. For more information, visit Chelsea Green.

Also checkout: The World According to Monsanto: Pollution, Corruption, and the Control of the World's Food Supply

Submitted by SadInAmerica on Fri, 08/19/2011 - 5:51pm.

Related:

Fascist Control Over Our Food Supply?  The S.510 Food Safety Scam

Would you vote for a Food Bill Monsanto Supports?

Soros and Food Safety

Deal Making, Arm Twisting and Sellouts Until: Senate Unanimously Passes Food Safety Bill

clip_image001

Frankenfood Coming Soon to a Store Near You

Food Laws – Forcing people to globalize

Sunday, June 19, 2011

How Swedes Stopped GMO Potatoes

activists

After being arrested twice, dedicated activists tie themselves to tractors to stop plantings of GM potatoes

IN SOME AREAS GREENPEACE HAS BEEN TAKEN OVER BY UNWANTED ELEMENTS, BUT IN SWEDEN, THEY SEEM TO BE DOING A GREAT JOB.

HERE IS THE LINK IS PICTURES OF THEM, DOING WHAT IS NECESSARY TO STOP THE PLANTING OF POTATOES WITH A MODIFIED GENE THAT IS RESISTANT TO ANTIBIOTICS. 

Friday, June 17, 2011 by: Jonathan Benson, staff writer

(NaturalNews) When petitions, protests, and even sit-ins were not enough to stop the biotechnology giant BASF from planting its genetically-modified (GM) Amflora potato in Sweden, Greenpeace activists there "walked their talk," so to speak, by literally tying themselves to the tractor plows that were about to be used to spread the GM seeds throughout fields.

As we recently reported here on NaturalNews, an initial group of activists, for the second year in a row, had been blocking the entrance to the BASF warehouse near the field where Amflora was to be planted, that is until police came and arrested them (http://www.naturalnews.com/032544_B...).

Now, a new group has taken their place to continue the efforts of the first by doing whatever it takes to stop BASF from planting the crops in violation of EU law, even if it means going directly after the company's planting equipment.

Amflora potatoes contain an artificially added gene that is resistant to antibiotics, which opponents say is contributing to the rising epidemic of antibiotic resistance around the world.

Amflora was also never properly investigated for safety, nor was it subjected to a rigorous environmental impact review as it should have been -- the Swedish government basically just allowed the European Commission to approve the "Frankencrop" arbitrarily without so much as a peep of opposition.

So activists have decided to take matters into their own hands once again, this time directly accosting BASF tractor plows, which were actually accompanied by a police escort in expectation of the activists. Police arrested seven members of the group early on, but a number of others made it through the blockade where they proceeded to tie themselves to the plows.

You can view photos of Greenpeace's efforts here: https://info.greenpeace.se/a_mediarelease/?openfolder=110519_Haparanda_Sweden_GMO_repository_blockade/

"What we see here happening is that the profit interests of a company like BASF is ranked higher than the health interests of the European public who by large majority rejects the cultivation of GMOs," said Ludvig Tillman of Greenpeace Sweden. "The Commission rubberstamped the approval of risky Amflora and the Swedish government did nothing but watching [sic]. So if they do not act, we have to act."

To help stop BASF's efforts to plant GM Amflora in Sweden, visit:
http://www.naturalnews.com/032585_G...

Sources for this story include: http://gmwatch.eu/latest-listing/1-...

Natural News

h/t to: Claudia Johnson

Related:

Greenpeace calls for global ban on American rice after GM contamination discovered

Would You Vote For A Food Bill That Monsanto Supports?  -  Your Government Did!

Top 6 Ways to Identify and Avoid GMO Foods

Genetically Modified Foods Engineered to Make Mankind ‘Retarded’ Already in 21st Century

The E.coli Outbreak in Europe is BioWar???

Tuesday, December 28, 2010

Canola Oil… Danger?!?

Olive oil comes from olives, peanut oil from peanuts, sunflower oil from sunflowers, but what is a canola?

Canola is not the name of a natural plant but a made-up word, from the words "Canada" and "oil". Canola is a genetically engineered plant developed in Canada from the Rapeseed Plant, which is part of the mustard family of plants. According to AgriAlternatives, The Online Innovation, and Technology Magazine for Farmers, "By nature, these rapeseed oils, which have long been used to produce oils for industrial purposes, are...toxic to humans and other animals".

Rapeseed oil is poisonous to living things and is an excellent insect repellant. I have been using it (in very diluted form, as per instructions) to kill the aphids on my roses for the last two years. It works very well; it suffocates them. Ask for it at your nursery. Rape is an oil that is used as a lubricant, fuel, soap and synthetic rubber base and as a illuminate for color pages in magazines. It is an industrial oil.

It is not a food.

Rape oil is strongly related to symptoms of emphysema, respiratory distress, anemia, constipation, irritability, and blindness in animals and humans. Rape oil was widely used in animal feeds in England and Europe between 1986 and 1991, when it was discontinued.

A few relevant facts

It is genetically engineered rapeseed. Canada paid the FDA the sum of $50 million to have rape registered and recognized as "safe". (Source: Young Again and others)

Rapeseed is a lubricating oil used by small industry. It has never been meant for human consumption.

It is derived from the mustard family and is considered a toxic and poisonous weed, which when processed, becomes rancid very quickly.

It has been shown to cause lung cancer (Wall Street Journal: 6/7/95)

It is very inexpensive to grow and harvest. Insects won't eat it.

Some typical and possible side effects include loss of vision, disruption of the central nervous system, respiratory illness, anemia, constipation, increased incidence of heart disease and cancer, low birth weights in infants and irritability.

Generally rapeseed has a cumulative effect, taking almost 10 years before symptoms begin to manifest. It has a tendency to inhibit proper metabolism of foods and prohibits normal enzyme function. Canola is a Trans Fatty Acid, which has shown to have a direct link to cancer. These Trans Fatty acids are labeled as hydrogenated or partially hydrogenated oils. Avoid all of them!

According to John Thomas' book, Young Again, 12 years ago in England and Europe, rapeseed was fed to cows, pigs and sheep who later went blind and began attacking people. There were no further attacks after the rapeseed was eliminated from their diet.

Source: David Dancu, N.D.

Apparently peanut oil is being replaced with rape oil. You'll find it in an alarming number of processed foods. I read where rape oil was the source of the chemical warfare agent mustard gas, which was banned after blistering the lungs and skins of hundred of thousands of soldiers and civilians during W.W.I. Recent French reports indicate that it was again in use during the Gulf War.

Check products for ingredients. If the label says, "may contain the following" and lists canola oil, you know it contains canola oil because it is the cheapest oil and the Canadian government subsidizes it to industries involved in food processing.

Adrenoleukodystrophy (ALD) is a rare fatal degenerative disease caused by in a build up long-chain fatty acids (c22 to c28) which destroys the myelin (protective sheath) of the nerves. Canola oil is a very long chain fatty acid oil (c22). Those who will defend canola oil say that the Chinese and Indians have used it for centuries with no effect, however it was in an unrefined form.*

(* taken from FATS THAT HEAL AND FATS THAT KILL by Udo Erasmus.) I read about a man who bred birds, always checking labels to insure there was no rapeseed in their food. He said, "The birds will eat it, but they do not live very long." A friend, who worked for only 9 mo. as a quality control taster at an apple-chip factory where Canola oil was used exclusively for frying, developed numerous health problems.

Rapeseed oil used for stir-frying in China found to emit cancer-causing chemicals. (Rapeseed oil smoke causes lung cancer.) Amal Kumar Maj. The Wall Street Journal, June 7, 1995 pB6(W) pB6 (E) col 1(11 col in). Compiled by Darleen Bradley.

Because of the lungs need for essential fatty acids in the oxidation relationship I have to suspect that canola oil has a quite negative affect on the way we breathe.

MORE FROM AN HERBAL WEB SITE-rmhiherbal.org

Canola oil Because of the public scare over animal fats, sales of vegetable oils of all types increased. It was the established wisdom that those oils high in polyunsaturated fatty acids were especially beneficial (animal fats are high in saturated fatty acids). The obsession with polyunsaturated versus saturated fats led researchers and nutritionists to overlook some of the other features of vegetable oils that we now know are crucial to health, including: (1) susceptibility to rancidity; (2) ratio of omega-3 to omega-6 fatty acids and its relevance in inflammatory diseases and immune system function; (3) possible presence of irritating or toxic compounds in particular plant oils. Unlike the case of trans-fatty acids, for which there is massive amount of research data, there is much less documented scientific research on canola oil consumption in humans, specifically.

Some sources (unverified) claim that the Canadian government and industry paid the U.S. FDA $50 million dollars to have canola oil placed on the GRAS ("Generally Recognized As Safe") list, which allowed the canola industry to avoid the lengthy and expensive approval process, including medical research on humans. However, experimental rats that were fed canola oil "developed fatty degeneration of the heart, kidney, adrenals, and thyroid gland. On withdrawing the canola oil from their diets, the deposits dissolved but scar tissue remained on all vital organs." [ref. 3a] In the absence of direct research studies of canola oil and human health, many concerned nutritionists and biochemists have attempted to analyze the canola oil situation on the basis of current knowledge of the biochemistry of fats and oils. While hard-nosed canola industry spokespersons may claim such commentary to be speculative, in the absence of proof of safety, anyone concerned about their family's health should pay close attention to the various arguments and warnings. [refs. 3a - 3i; for canola industry position, see refs. 3j, 3k]

The Canola Council of Canada has published a report [ref. 3k] that focuses heavily on the high polyunsaturated fatty acid content of canola oil and the presumed benefits of polyunsaturated oils on various blood parameters (platelet phospholipids, platelet aggregation, eicosanoid production, clotting time). In spite of the many scientific references listed at the end of the report, the author studiously avoids discussion of the toxic effects mentioned by many nutritionists and biochemists, and, instead, attempts to link many of the benefits of Mediterranean-type diets high in olive oil to diets high in canola oil, when in fact, no such evidence is presented, and canola oil has never been part of a traditional Mediterranean diet.

Concerns about the risks of using canola (rapeseed) oil focus on several aspects: (1) the presence of long-chain fatty acids, including erucic acid, which are thought by some to cause CNS degeneration, heart disease, and cancer; (2) the high temperatures needed in the refining process to make canola oil palatable, which lead to formation of trans-fatty acids; (3) miscellaneous undesirable chemical constituents (thioglycosides and thiocyanates) whose effects are unclear, as their concentration in the refined product is probably very low. Although Chinese and Indian peoples have long used rapeseed oil in cooking, it was not refined and processed to the extent of modern commercial methods, and it was never considered to be a high quality oil for human consumption. Ayurvedic physicians have for thousands of years classified olive, almond, and sesame as the best oils for human health, and have considered safflower, soybean and rapeseed oils to be undesirable for human consumption except perhaps when no other oil sources were available. Recent epidemiological studies of high lung cancer rates in Chinese women suggest that wok cooking with rapeseed oil is responsible, rather than tobacco smoking, which was only a weak factor. Chinese rapeseed oil tended to produce the highest emissions of the potentially carcinogenic or mutagenic compounds 1,3-butadiene, benzene, acrolein, and formaldehyde, when compared with soybean oil and peanut oil. [ref. 3n] Canola oil contains a long-chain fatty acid called erucic acid, which is especially irritating to mucous membranes; canola oil consumption has been correlated with development of fibrotic lesions of the heart, CNS degenerative disorders, lung cancer, and prostate cancer, anemia, and constipation. [ref. 3a, 3b]

Canola oil derives from the plants Brassica campestris and B. napus, which have been selectively bred to substantially reduce the erucic acid content. However, some health professionals feel that there is still too much present in current canola oil products for safe use. Some critics of canola oil focus on the fact that rapeseed oil was originally used as an industrial lubricant and known to be unfit for human consumption, although many vegetable oils have been used in industrial applications as well as in foods. The long-chain fatty acids found in canola have been found to destroy the sphingomyelin surrounding nerve cells in the brain, in some cases leading to a degenerative brain condition remarkably similar to mad-cow disease (bovine spongiform encephalopathy); in advanced cases the brain tissue develops a Swiss-cheese-like appearance, full of holes. Illnesses and conditions that have been associated with canola oil consumption include loss of vision (retinal capillaries are very sensitive and easily damaged), and a wide range of neurological disorders. [ref. 3a]

The high temperatures used in canola refining will damage many of the essential fatty acids, which are much more susceptible to damage by heat than saturated fats. (Heat may convert many of the unsaturated double bonds to the "trans" configuration.) While high-quality essential fatty acids are required for human health, in their damaged or rancid forms they become harmful. Additional problems with canola oil include the presence of minute, but potentially dangerous, amounts of thioglycosides, which have thyrotoxic effects. [ref. 3m]

To reduce the concentration of these compounds requires processing with alkalinizing agents plus high temperatures; unfortunately, the high temperatures used in processing have other undesirable effects, the most serious of which is the conversion of unsaturated fats to the trans form. Rapeseed has been selectively bred and genetically engineered [ref. 3a] in an attempt to reduce the toxic components and processing methods were developed to further reduce the concentration of undesirable compounds. Prior to its entry into the "health" food market, it was known as rapeseed oil, but savvy marketing professionals knew that the health food market, heavily dominated by young, college-educated women, would not purchase a repulsive-sounding product called rapeseed oil. The name of the selectively bred variety was changed to canola (as in "Canadian oil"; it has been heavily promoted by Canadian government and agricultural organizations) oil; the name rolls off the tongue with a mellifluous sound. [3.1]

Recommendations The biochemistry of plants and natural food products is often complex; the total effect of a given food on human health is dependent upon many chemical constituents and their interaction with biochemical pathways of the body. To radically alter our diets based on scientific evidence regarding only a few aspects of this biochemistry is like cooking in the dark. Common symptom reactions to unhealthy oils and fats, or to an unhealthy balance of the types of fats in one's diet include joint pain and aggravation of arthritic conditions, a general tendency to have increased tissue irritability and inflammation, and, in the case of unhealthy fats such as hydrogenated oils and excessive amounts of fried foods, abdominal fullness and indigestion. While these conditions also may be due to other factors, quality of fats and oils is important. How one feels immediately to within several days after eating specific types of fat is often a useful indicator of whether one's fat consumption is healthy or unhealthy. Avoid canola oil; there is too much doubt about its safety. Recommended oils and fats, which are essential nutrients, include moderate amounts of meat in the form of clean sources (organically grown, etc.) of beef, lamb, and other red meats, poultry, fish (especially sardines and mackerel), plus olive, almond, or sesame oil; of all the vegetable oils, olive oil is probably the safest and best for health reasons. All of these have been in traditional use in various cultures for thousands of years. Individual differences in metabolism will dictate needs for more or less of these types of oils and fats.

An attorney for the Canola people sent me this.

http://www.canola-council.org/production/thetruth.html

"If you read down into this page you will see a number of links to other independent and very reputable Web sites (the Cancer Association, American Society of Science and Health, Washington Post, Health Central and others) that refute the claims made on this page."

Recommendations Dr. Doug Graham states that oils in general inhibit nutrient absorption in the small intestine. With all the choices why take any chances?

If you must use oils

  • Pure Olive oil only.
  • Bariani (Sacramento California area) is a good one.
  • Udo's Choice or Russell Martino's EFAs is a real good one for balanced EFAs.
  • Safflower and Sunflower oils are OK, but they contain Omega 6 which may or may not be not a good option for the heart or the myelin sheaths.

Reject any foods, packaged or otherwise, which have in the label "...may contain vegetable oil, cottonseed, canola oil..." And if the label just says vegetable oil, we reject it outright since it does not specify which oil.